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Integral equation theory for fluids ordered by an external field: Separable interactions

Aurélien Perera
Laboratoire de Physique The´orique des Liquides, Universite´ Pierre et Marie Curie, Case Courrier 121, 4 Place Jussieu,

75252 Paris Cedex 05, France*
~Received 12 April 1999!

The structural and thermodynamical properties of classical fluids orientationally ordered by an external field
are investigated by means of integral equation theories. A general theoretical framework for handling these
theories is developed and detailed for the particular case of separable interactions between fluid particles. This
approach is then illustrated for the case of two~off lattice! models: the ferromagnetic Heisenberg model and a
simple liquid crystal model, for which the numerical solution of integral equations such as the Percus-Yevick,
the hypernetted chain, and the reference hypernetted chain closure equations are presented and compared with
Monte Carlo simulation results and the analytical solution of the mean spherical approximation. The zero-field
case is also examined, and the spontaneous ordering is analyzed in detail, mainly in what concerns the
appearance of infinite wavelength singularity in the Ornstein-Zernike equation and the relation with the one-
body closure equations and the long range orientational ordering that occurs. In particular, it is shown that the
Wertheim one-body closure equation appears as a sum rule compatible with the Ornstein-Zernike equation.
The relation between the elastic constant and the long range tail of the pair correlation function is made
explicit. In particular, the long range behavior of the various terms in the expansion of the pair correlation
function is depicted. The numerical investigation of the two models shows that it is not possible to discriminate
between the four integral equations, as to which one would be the most accurate in all cases. The general trends
in the thermodynamical and structural properties seem to indicate that the Percus-Yevick approximation is
generally better in the strong ordering case, whereas the reference hypernetted chain approximation might be
better suited to the study of the isotropic phase and the low ordering regimes.@S1063-651X~99!00909-5#

PACS number~s!: 61.20.Gy, 61.30.Gd, 61.20.Ja, 61.30.Cz
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I. INTRODUCTION

The integral equation theories for orientationally inhom
geneous systems are not developed to the same point as
are for the spatially inhomogeneous systems. This can
explained by the fact that such studies have been lar
preempted by lattice theories for spinlike models@1# or by
phenomenological approaches for liquid crystalline ty
models@2–4#, which capture the essential features of orde
fluids and mainly provide analytical approaches to most
the physical properties of such fluids. Yet one might be
rious about how to relate these approaches to standard li
state theories. Such methods have already been applie
investigate the isotropic phase of fluids with angle depend
molecular interactions@5–7#. In the absence of a formalism
allowing a calculation of the structural properties of the
dered phases, the usual way to handle the thermodynami
these phases is through density functional theories, wh
one make the assumption that the direct correlation func
of the isotropic phase, near its limit of stability, can be us
to tailor that of the coexisting ordered phase@8,9#. Although
this type of argument can be refined in several ways@10#, it
would be desirable to obtain a direct correlation function
the ordered phase by some other methods. The main pro
in applying integral equation techniques to such cases is
appearance of the one-body orientational distribution fu
tion in the Ornstein-Zernike~OZ! equation, which in turn
implies that a second closure relation must be imposed
order to solve a closed system of equations. The approp
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choice of the one-body closure is then a crucial step.
Recently, two works have tackled this problem direct

Sokolowska solved the mean spherical approximat
~MSA! for the ordered continuum ferromagnetic Heisenbe
fluid @11# and for a nematic model@12#, providing the first
analytical solution for the direct correlation function of su
fluids. The so-called Wertheim equation for one-body c
sure has been used in these works. Lado and co-wor
@13,14# numerically solved the reference hypernetted ch
~RHNC! equation and a variant of the Zerah-Hansen clos
equation for the continuum ferromagnetic Heisenberg, a
one-body closure was derived from the first equation of
BGY hierarchy. Both approaches investigated the influe
of zero and finite ordering fields on the properties of t
ordered fluid. The method adopted by Lado and co-work
was based on the tailored orthogonal polynomial techniq
that has been successfully applied for various cases suc
polarizable fluids@15# or polydisperse fluids@16#. The basic
feature of this method, applied to the Heisenberg fluid, is
expand the pair and direct correlation functions on a basi
rotational invariants that are tailored on the one-body ori
tational correlation function. These new invariants are th
dependent on the form of this function, and must be reco
puted every time the one-body function changes. Althou
formally very general, this method is most efficiently impl
mented when the analytic form of the one-body distributi
can be guesseda priori @15,16#. In particular, the Heisenberg
fluid was studied in Ref.@13# by assuming a Maier-Saup
form, which indeed appears to be a sound approximation
the case of separable intermolecular interactions. In w
concerns nonseparable interactions, the study of fluids m
of dipolar hard convex molecules@17# has revealed non
2912 © 1999 The American Physical Society
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PRE 60 2913INTEGRAL EQUATION THEORY FOR FLUIDS ORDERED . . .
trivial one-body functions, which in particular cannot be ca
in a simple Maier-Saupe form. It is certainly desirable
solve the integral equations for inhomogeneous fluids w
out anya priori knowledge about the form of the one-bod
distribution function.

A general method is introduced in the present wo
where it is shown that it is quite possible to solve stand
integral equations by using the natural rotational invaria
~there is no need to compute them explicitly!, without any
assumption about the form of the one-body function, and
keeping the same techniques that are used for the isotr
phase@5,6#. This method can thus be applied to several ot
interesting cases, such as, for example, the nematic pha
hard convex bodies, as well as dipolar and ferro fluids. T
method is described extensively in the present work,
illustrated for the case of the two models of separable in
actions which have been used in the recent literat
@11,18–21#. It turns out that the use of natural invarian
allows one to obtain a direct insight into the meaning of
various one-body closures, and particularly into the appe
ance of long range spontaneous orientational ordering in
absence of field. The method presented here thus allows
to study the appearance of spontaneous orientational ord
a liquid crystalline type fluid. The remainder of this paper
as follows. In Sec. II, the general theoretical framework
separable interaction is detailed, and the choice of the o
body closure is analyzed in terms of the relation to the
equation. Expressions for the thermodynamical propertie
the ordered fluid are given. The relation between the p
density expansion coefficients which are measured by
computer simulations and the pair distribution function th
used in an theory is detailed~this difference is often over
looked when reporting structural data!. This last point settles
the large separation behavior of the density correlation fu
tion, indicating in particular which are the expansion coe
cients of the pair correlation function that decay to zero, a
which tend to a constant limit. Section III covers the co
parison between the simulations and the four integral eq
tions that are solved by the method proposed herein.
conclusions are given in Sec. IV.

II. STATISTICAL MECHANICS OF THE ORDERED
FLUIDS

In what follows, we consider a fluid of spherical particl
with diameters with an orientation specified by the un
vectoru. This fluid is subject to an external ordering field
the formbfext(1)52BPa(u•n) which favors an order par
allel to the directionn. Pa is a Legendre polynomial of orde
a, andb51/kBT is the inverse Boltzmann temperature. W
confine ourselves to separable interactions between the
particles of the form

bu~1,2!5bu~r ,u1 ,u2!5u0~r !1bua~r !Pa~u1•u2!,
~1!

whereu0(r ) is the isotropic part of the interactions~this can
be a hard sphere type interaction or any other type!. The
orientational part is model dependent, and is selected by
parametera which can take two values:a51 corresponds to
a Heisenberg type model, anda52 selects the nemati
t
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model. These two models have been abundantly investig
in the recent literature@11,12,18–21#.

A. Expansion of the pair correlation function

In order to formulate the problem clearly, we need
specify the form of rotational invariant which must refle
the symmetry of the pair correlation function in the order
phase. Clearly, the choice of the interaction in Eq.~1! dic-
tates that the pair correlations are independent of the or
tation of the intermolecular vector. The most general exp
sion that takes accounts of this property, as well as the a
symmetry of the particles, can be written in the form

g~1,2!5g~r ,u1 ,u2!5 (
m,n,m

gmnm~r !Rm0
m ~u1!R2m0

n ~u2!

~2!

whereRm0
m (u1) are the usual Wigner elements@22#. The only

rotational invariant operation that leavesg(1,2) unchanged is
any arbitrary rotation of the set (u1 ,u2) around the director
by an azimuthal anglef. This invariance leads the appea
ance of a unique indexm in the above expansion.

It is useful to write down the Fourier transform of th
equation. In fact, only the zeroth-order Fourier-Hankel tra
form will appear due the separability of the interaction,

g̃~1,2!5E drW exp~ ikW•rW !g~1,2!

5g̃~k,u1 ,u2!5 (
m,n,m

g̃mnm~k!Rm0
m ~u1!R2m0

n ~u2!,

~3!

with

g̃mnm~k!54pE
0

`

dr r 2gmnm~r !
sin~kr !

kr
. ~4!

Equation~2! can be cast in a matricial form, by introducin
the following matrix Gm with matrix elements$Gm%mn
5gmnm(r ) and the vectorGI m(1) with elements$Gm%m

5Rm0
m (1),

g~1,2!5(
m

GI m
t ~1!GmGI m~2!, ~5!

where the superscriptt indicates a transpose. The matrix n
tation is quite convenient, and will be often used in wh
follows. The expansion in Eq.~2! has some symmetry prop
erties worth noting. First the particle exchange symme
g(1,2)5g(2,1) implies gmnm(r )5gnmm(r ). The reality of
the pair correlation function impliesgmn2m(r )5gmnm(r ).
As a consequence, the matricesGm are symmetrical and in-
variant under the changem→2m. Similar considerations
hold also for the direct correlation matrixCm and the matrix
of the Fourier transformsG̃m andC̃m . For notation simplic-
ity, the explicitr andk dependences are omitted in the mat
notation.

In the absence of an external field (B50) and far from
any spontaneous order, these equations naturally reduc
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2914 PRE 60AURÉLIEN PERERA
the isotropic fluidlimit. In this case, the rotational invarianc
property leavesg(1,2) unchanged under any arbitrary rot
tion of the set (u1 ,u2). It is easy to show that expansion~2!
still holds, but with the restrictionm5n. Using the addition
theorem of the spherical harmonics, this expansion can
be written more simply as

gI~1,2!5(
m

gm~r !Pm~u1•u2!, ~6!

where the indexI discriminates the isotropic phase. The e
pansion coefficients between the two expansions~2! and ~6!
are simple related bygI

mnmdmn5gm(2)m. As a consequence
the Gm matrices arediagonal in the isotropic limit. We now
proceed to show how these expansions can be used to
the OZ and closure relations into manageable forms.

B. Expansion of the one-body closure

The major difference between the integral equation
isotropic fluids and that for ordered fluids is the presence
a one-body closure relation in addition to the usual pairing
the Ornstein-Zernike relation with a two-body closure su
as the hypernetted chain approximation. The singlet den
function that is nucleated by the external orientationally
dering field can be written as

r~1!5r~u!5
rN

4p
f ~1!, ~7!

where

f ~1!5 f ~x5u•z!5(
l

al Pl~x!, ~8!

where rN is the number density of the ordered phase@the
indexN denotes the~ferro!nematic-type order, and the inde
I will be used for the isotropic phase#. In the isotropic phase
one has simplyr(1)5r I /(4p). In the relation above, we
choose the normalization such asa051:

E du r~u!5rN . ~9!

We note that the order parametersSm of the ordered fluid are
related to the expansion coefficientsam above by the relation

Sm5^Pm~1!&5
1

4p E du Pm~u! f ~u!5
am

2m11
. ~10!

There are three exact relations involvingr~1! that are avail-
able from first principles@23#. All three equations can be ca
under a similar form,

iLW 1@ ln r~1!1bfext~1!#5E du2KW ~u1 ,u2! ~11!

and differ by the form of the kernelKW . (iLW 1 is the angular
momentum operator acting on the orientation of particle!.
The first one can be derived from the BGY equation un
the assumption of pairwise additivity of the pair interaction
The corresponding kernel reads
en

-

ast

r
f
f

h
ity
-

r
.

KW BGY~u1 ,u2!52r~2!E drW g~1,2!iLW 1bu~1,2!. ~12!

The second equation involvesc(1,2), the pair direct correla
tion function ~dcf! and the corresponding kernel is

KW C~u1 ,u2!5 c̃~0!~u1 ,u2!iLW 2r~2!, ~13!

where c̃(0) is the zeroth-order Fourier-Hankel transform
the direct correlation function. Finally, the last equation
volves h(1,2), the pair correlation function, and the corr
sponding kernel can be written as

KW H~u1 ,u2!52h̃~0!~u1 ,u2!r~2!iLW 2bfext~2!. ~14!

These last two equations are not independent, and in fact
be interrelated through the Ornstein-Zernike equation@23#,
as shown in Sec. II A. There are no simple relations betw
the first equation and the two latter ones. In fact, the fi
equation can be considered as a ‘‘virial’’ form of the on
body closure equation, whereas the last two can be see
the ‘‘compressibility’’ analog of this closure in the sense th
they are related to the OZ equation, as will become clea
Sec. II C. At present, it is not clear if these two equations w
lead to the same solution forr~1! if the pair and direct cor-
relation functions are exactly known@23#.

The second equation is sometimes called the Werth
equation, as it was proposed by this author in the contex
the liquid-vapor interface problem@24#. It is quite convenient
to deal with, as the direct correlation function is generally
short ranged function; thusc̃(0)(1,2) is well defined. We will
now look into the details of this equation for our problem

For the symmetry of our problem withu5(u,f), the
angular momentum operator is simply@25# iLW
5„2sin(f),cos(f),0…]u . Using the expansions in Eqs.~2!–
~4!, we can write the solution of the Wertheim equation f
orientationally ordered fluids as

r~1!5
rN

4p

exp„2bfext~1!1W~1!…

Z
~15!

where the normalization constantZ is imposed such thatr~1!
obeys Eq.~9!, and

W~1!5W~x5u•z!5(
m

WmPm~x!, ~16!

with

Wm52rN(
n

an

2n11 S n~n11!

m~m11! D
1/2

c̃mn1~0!. ~17!

We note that only them51 expansion coefficients of th
dcfcmnm appear in the one-body closure. This feature is v
important in what follows, and is not present in the BG
version of the one-body closure as written in Eq.~12!. In
practice, Eqs.~15! and ~17! are sufficient to solve for the
one-body equation when the moments of the dcf are av
able. These equations can be easily solved by succes
interactions starting with an initial guess forf (1) @for ex-
ample, f (1)5exp„2bfext(1)…], and am are determined a



a

al
i

T
l-
th
re

e-

ts
-
n

o

n

ve
-

a
io
d
en

id

ier
ct
us
, it
in

vity

n,
s:

en-
ns

te

tor-
c-

r.

-

it,
sys-

t
n

al
-

PRE 60 2915INTEGRAL EQUATION THEORY FOR FLUIDS ORDERED . . .
each iterative step using the last equality in Eq.~10!. We can
also write the one-body equation in the form of matrix equ
tion. If we expand the equations in Eqs.~11! and ~13! in
terms of f (1), we cancast these equations in the form

~ I2R1C̃1
~0!!AO 5BO , ~18!

where we have adopted the matrix notation of Eq.~5!, that is
C̃1;mn

(0) 5 c̃mn1(0). ThevectorsAO and BO are defined by their
components through the relationsAO m5rNamAm(m11)/
(2m11) andBO m5BAa(a11)Ram1, I is the identity matrix,
anda is the model selecting parameter introduced in Eq.~1!.
In the equation above, we have introduced a new matrixRm
with matrix elements

Rmnm5E du r~u!Rm0
m ~u!R2m0

n ~u!. ~19!

This matrix is very important in the solution of the integr
equations for orientationally inhomogeneous fluids, and w
appear recurrently in this work and subsequent ones.
matrix elements in Eq.~19! can be thought as an orthogona
ity relation between the Wigner elements, weighted by
one-body function. If one uses this relation to define tailo
Wigner elements such that theRm matrices reduce to the
identity ~the orthogonality of the new tailored Wigner el
ments! one recovers the solution method used in Ref.@13#.

From Eq.~19! and the properties of the Wigner elemen
@25#, it can be seen that the matrixRm has the same symme
try properties as the correlation functions. In particular, o
can show that

Rmnm5rN(
l

al S m
m

n
2m

l
0D S m

0
n
0

l
0D ~20!

where the matrix symbols above are the 32 j elements@25#.
If we now expand the one-body equation in terms

ln f(1), we obtain a different matrix equation

~ I2C̃1
~0!R1!LO 5QO , ~21!

where the vectorsLO and QO are now defined asLO m

5WmAm(m11) and QO m5BAa(a11)dam and whereWm
are given by Eq.~17!. We note that, in the absence of a
external ordering field (B50), Eqs.~18! and~21! show that
these matrix equations are now eigenequations for the
tors AO andLO , respectively, with unit eigenvalue. In particu
lar, the matrices (I2R1C̃1

(0)) and (I2C̃1
(0)R1) are singular in

the zero-field limit if there is a nontrivial solution forr~1!.
We see in Sec. II C that this singularity in the matrix equ
tion is responsible for the divergence of the pair correlat
function in the limitk50, which is responsible for the turbi
appearance of systems orientationally ordered in the abs
of any external field@3#.

C. Expansion of the Ornstein-Zernike equation

The Ornstein-Zernike equation for inhomogeneous flu
can be written as@23#
-

ll
he

e
d

e

f

c-

-
n

ce

s

h~1,2!5h~1,2!2c~1,2!5E d3r~3!h~1,3!c~3,2!

~22!

This equation is more conveniently written after a Four
transform, which allows one to write the convolution produ
as a product of the transforms. After expanding the vario
terms, and using the orthogonality of the Wigner elements
is straightforward to show that this equation can be written
a matricial form as

Ñm5H̃m2C̃m5H̃mRmC̃m5C̃mRmH̃m , ~23!

where the last equality expresses simply the commutati
of the convolution in Eq.~22!. We recall that it is understood
that theC̃ andH̃ arek dependent. By a simple manipulatio
one can rewrite these equations into two equivalent form

~ I1RmH̃m!~ I2RmC̃m!5I ,

~ I2C̃mRm!~ I1H̃mRm!5I . ~24!

These equations are no more complex to solve as those
countered in the expansion of the isotropic fluid equatio
for nonseparable interactions@5,6#. In practice, it is prefer-
able to use the following equation in order to compu
h̃mnm(k)5h̃mnm(k)2 c̃mnm(k):

Ñm5C̃mRmC̃m~ I2RmC̃m!215~ I2C̃mRm!21C̃mRmC̃m
~25!

The OZ equation can be used to obtain directly the fac
ization of the third closure equation for the one body fun
tion ~14!. Indeed, using Eq.~24!, one obtains directly from
Eqs. ~18! and ~21!, respectively, the following result atk
50 and form51:

~ I1R1H̃1
~0!!B̄5Ā,

~ I1H̃1
~0!R1!Q̄5L̄. ~26!

The case of the isotropic fluid is interesting in particula
All the matrices are then diagonal, and theRmnm matrix ele-
ments reduce tor I /(2m11)(2)m. The OZ equations de
couple entirely for each component

h̃m~k!5
r I@ c̃m~k!#2/~2m11!

„12r I c̃m~k!/~2m11!…
, ~27!

which is a result that was derived previously@7,20#.

D. Spontaneous ordering in the absence of an ordering field

Another interesting case is the zero ordering field lim
when spontaneous order can appear and persist in the
tem. In this case, we see from the eigenequation in Eq.~21!
that, in thek50 limit, the OZ equation is singular form
51 with a nontrivialr~1!. In particular, one cannot inver
P15(I2C̃1R̃1) in Eq. ~24!, and some care must be take
before performing this operation. The singularity in theP1
matrix in fact reflects the growth of long ranged orientation
correlations ingmn1(r ) with m51. From the expansion equa
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2916 PRE 60AURÉLIEN PERERA
tion ~2!, we see thatm51 expansion terms correspond to t
angular average of the following Wigner elements:

gmn1~r !'^R10
m ~1!R210

n ~2!1R210
m ~1!R10

n ~2!&. ~28!

Using the definition of the Wigner elements in terms
spherical harmonics@25#, we can write, in particular,

R10
m ~u!5

A12z2

Am~m11!

d

dz
Pm~z!~x2 iy !5gm~z!~x2 iy !,

~29!

with the Cartesian notationz5cos(u) and e2 if5x2 iy for
the components of any unit vectoru(u,f). Therefore, one
has

gmn1~r !'^gm~z1!gn~z2!u1
'
•u2

'&, ~30!

where the vectoru1
'5(x,y,0) is orthogonal to the direction

of the order ~taken here to be thez direction!. Thus the
gmn1(r ) component measures the orientational correlati
in the plane perpendicular to the director, and thus has ar
long ranged tail when spontaneous order is present in
system. It is interesting to note that it is the transverse fl
tuations that are responsible for the long range order in
unoriented nematics, not the longitudinal ones that reflect
director long wavelength distortions and are associated w
the elastic behavior of these ordered fluids. It is these tra
verse correlations that are responsible for the turbid app
ance of real unoriented nematics, and the strong forw
scattering observed in these materials. These transvers
citations atk50 and zero field are often called Goldsto
modes, and the Wertheim equation, or equivalently the
equation in the limitk50, does contain these modes, ind
pendently of the two-body closure relation that might
used. It is an open question as to whether the use of the B
one-body closure together with the OZ equation will lead
these modes. In particular, one would like to know if the tw
limits k50 and B50 coincide to produce the Goldston
modes. The numerical information from Ref.@13# does not
allow a clearcut answer of this problem. The exact algeb
long range decay of these transverse correlations is kn
from renormalization group theory to be 1/r 11h @1#. How-
ever, in the present case, in the absence of an exact clo
the classical Ornstein-Zernike form should be expected,
is, gmn1(r )'1/r . Thus the Fourier transform of this functio
will have a small k singularity of the form g̃mn1(k→0)
'1/k2. In order to see the consequence in the OZ equat
~24!, we perform a smallk expansion of the matrices:

C̃15C̃1
~0!1k2C̃1

~2!1¯ ,

H̃15
1

k2 H̃1
~22!1H̃1

~0!1k2H̃1
~2!1¯ . ~31!

Combining these expansion into the OZ equations~24! for
the term in 1/k2 in the expansion we obtain

~ I2C̃1
~0!R1!H̃1

~22!50. ~32!
f
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Comparing this equation with Eq.~21! we see that a solution
for H̃1

(22) compatible with the eigenequation~21! is to pos-
tulate that

H̃1
~22!5kLO ^ kLO , ~33!

where^ denotes a tensorial product between the two eig
vectorsLO , andk is an arbitrary constant. For separable sy
tems with spontaneous ordering, the exact form of the lo
range part of the pair correlation is then known from t
expression forL @Eq. ~21!#:

lim
r→`

hmn1~r !5k2
WmWm

r
~34!

with Wm given by Eq.~17!. The constantk will be related
soon in what follows to the elastic constant of the fluid. Th
result allows one to solve the case of spontaneous orde
quite precisely and numerically, as the long range decay
be handled exactly. We come back to this point in Sec. III
is quite remarkable that the limit in Eq.~34! is reminiscent of
that observed in ionic fluids. In that sense the termkWm
plays the role of a ‘‘charge.’’ This analogy is used in th
actual numerical solution of the integral equations in orde
handle the long range part of the distribution function, as
explained in Sec. III.

E. Expansion of the two-body closures

A closure relation relating the pair and direct correlati
functions is needed in order to have a closed set of equat
to solve. The RHNC closure equation can be written as

g~1,2!5exp„2bu~1,2!1h~1,2!1b000~1,2;s̄ !…, ~35!

whereb000 is the isotropic part of the bridge function, whic
is empirically known in some cases~hard sphere and
Lennard-Jones fluids!. The effective diameters̄ ~or equiva-
lently, the effective density! involved inb000(r ) must be ad-
justed by a free-energy minimization@26#. Following Fries
and Patey@5#, this type of equation can be rewritten as:

c~1,2!52bu~1,2!1b~1,2!2E
r

`

dr8h~1,2!
d

dr8
w~1,2!,

~36!

where w(1,2)52bu(1,2)1h(1,2)1b000(r ) is the argu-
ment of the exponent in Eq.~35!. In this form the equation
can be readily expanded and thus written in a solvable fo

cmnm~r !52bumnm~r !2b000~r !dm0dn0dm0

2 (
m1n1m1
m2n2m2

PE
r

`

dr8hm1n1m1~r 8!
d

dr8
wm2n2m2~r 8!,

~37!

where the coefficientP depends on all nine indices, and
explicitly given by
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P5~2m11!~2n11!S m1

m1

m2

m2

m
2m D S m1

0
m2

0
m
0 D

3S n1

2m1

n2

2m2

n
m D S n1

0
n2

0
n
0D . ~38!

The above relation must be completed by the exact one v
for r ,s:

cmnm~r !52dmdndm2hmnm~r ! for r ,s ~39!

Of course, neglecting the bridge termb000(r ) gives the HNC
equation.

The Percus-Yevick~PY! equation can also be written i
terms of the direct correlation function as

c~1,2!5F~1,2!„11h~1,2!…, ~40!

where F(1,2)5exp„2bu(1,2)…21 is the Mayer function.
This equation is readily expanded as

cmnm~r !5Fmnm~r !1 (
m1n1m1
m2n2m2

PFm1n1m1~r !hm2n2m2~r !,

~41!

where the coefficientP is given by Eq.~38!. We show in the
Appendix how the Mayer coefficientsFmnm(r ) can be ana-
lytically computed for the case of separable interactions.
nally, the MSA states thatc(1,2)52bu(1,2). For the case
of interactions of the form of Eq.~1!, by using the addition
theorem of the spherical harmonics and the relation betw
the Wigner elements and the spherical harmonics@25#, one
can resume the MSA as

cmmm~r !52~21!mbum~r ! for r .s, ~42!

wherem is restricted to the valuesm50 or m5a. The MSA
for such a model has been solved analytically@11,12#. We
have tested our numerical algorithm by reproducing the
sults for the MSA. Despite the fact that it is amenable
analytical solutions, we note that the MSA has severe dr
backs, one of which is that the embodied direct correlat
function has exactly the symmetry of theisotropicpair inter-
action. For this particular reason, this theory cannot give
valuable information in the case of the antiferromagne
Heisenberg model@21#, for which it predicts no ordering
transition@27#. The numerical details for the practical sol
tion of the coupled set of three equations is given in Sec.

F. Infinite field limit: B5`

In this limit, one has rigorously

r~1!5rNd~u2n!, ~43!

where n is the direction of the field, along which all th
particles are pointing (u5n). Using the spherical harmonic
expansion of the Diracd function @25# with Eq. ~8!, one
obtainsam5(2m11) for all the expansion parameters. U
ing Eq. ~10!, this is equivalent to stating that all the ord
parametersSm are unity. We can select the director orient
tion ~or, equivalently, the field orientation! to be that of thez
lid

i-

en

-

-
n

y
c

I.

-

axis. Then usingRm0
m (uiz)5dm0 @25#, we find the new ex-

pansion of the correlation functions,

h„r ,~u1 ,u2!iz…5(
m,n

hmn0~r !, ~44!

which is independent of the orientation, as expected. In p
ticular, the pair interaction becomes, by using the equa
above

bu„r ,~u1 ,u2!iz…5u0~r !1ua~r !. ~45!

In other words, the fluid particle interaction is now pure
isotropic. Needless to say, this conclusion is only valid
separable interactions. For the general case of nonsepa
interactions one finds@28# that the pair interaction depend
only on the angle~r ,u! in the same limit.

G. Thermodynamics of the orientationally ordered fluid

Various thermodynamic properties can be written in ter
of the pair and direct correlation functions. The correspo
ing expressions vary substantially from the isotropic flu
case, mainly due to the presence of the one-body functio

1. Excess internal energy

The excess internal energy is the canonical average o
sum of all the interactions in the system, which in our ca
contains a contribution from the external field, in addition
the usual pair interaction term. The general expression
the excess internal energy for the case of inhomogene
fluids is then given by

bUex5 1
2 E d1d2r~1!r~2!g~1,2!bu~1,2!

1E d1bfext~1!r~1!, ~46!

where the last term is the external field contribution. For
particular case of orientationally ordered fluids with spat
homogeneity, this expression reduces to

bUex/N5
rN

2~4p!2 E drW du1du2f ~1! f ~2!g~1,2!bu~1,2!

1E du1bfext~u1! f ~1! ~47!

Upon expansion of the various terms involved, this can
written in a compact way as the trace of a matrix produc

bUex/N5
2p

rN
E

0

`

drr 2(
m

Tr@GmRmUmRm#2BSa ,

~48!

whereSa in the last term is the order parameter introduced
Eq. ~10! for the model selected with the parametera. We
note that if the pair potential decays faster than 1/r 3, then the
eventual long ranged part ing(1,2) due to the spontaneou
ordering will not induce a divergence in the internal energ
Thus the energy will remain finite in the vicinity and belo
the Curie point, as expected. However, in the case of dip
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fluids, some care must be taken in the evaluation of the l
range contributions. This type of problem will be consider
in a subsequent work.

2. Virial pressure

One can similarly derive a compact expression for
virial pressure which is defined generally for inhomogene
fluids as

bP

r
512

1

6r E d1d2r~1!r~2!g~1,2!r
d

dr
bu~1,2!

~49!

which for orientationally ordered fluids with spatial inhom
geneity reduces to

bP

r
512

2p

3
rNE

0

`

dr r 3E E du1du2f ~1! f ~2!g~1,2!

3
d

dr
bu~1,2! ~50!

One can expand the various functions and write a comp
expression also involving a trace

bP

r
512

2p

3rN
E

0

`

dr r 3(
m

Tr@GmRmdUmRm# ~51!

where the matrixdUm contains the expansion coefficients
the derivative of the potentialdbumnm(r )/dr. Provided the
pair potential decays faster than 1/r 3, there are no diverging
contribution to the viral pressure.

3. Compressibility

The correct expression of the compressibility for inhom
geneous fluids is given by@23#

xT

xT
0 511

1

^N& E d1d2r~1!r~2!h~1,2! ~52!

wherexT
051/(rkBT) is the compressibility of the ideal gas

For ordered fluids which are spatially homogeneous,
equation can be simplified to give

xT

xT
0 511

rN

~4p!2 E E du1du2f ~1! f ~2!h̃~0!~u1 ,u2!.

~53!

By introducing the generalized structure factor for orde
fluid as the angle average of Fourier transform of the p
density r (2)(1,2)5r(1)r(2)g(1,2) @more exactly the Fou-
rier transform ofr(1)r(2)h(1,2), which decays to zero#,
after performing the angular integrals one finds

S̃~k!511
1

rN
T̃00 ~54!

where the matrixT̃ is defined asT5R0H̃0R0 . Then the
compressibility is related to the structure factor of the
dered phase exactly by the same expression that of the
tropic phase
g
d

e
s

ct

-

is

d
ir

-
o-

xT

xT
0 5S̃~0! ~55!

We note that, as opposed to the case of isotropic flu
where it is relatively easy to relate the compressibility to t
direct correlation function, this operation is not trivial her
Hence, the expression given in Ref.@13# is incorrect. We
also note that above expression is free of the divergences
appear in case of spontaneous order as it only invol
h̃mn0(k50) and not them51 expansion terms. We note tha
the compressibility can diverge in case of the appearanc
long range order in theisotropic part of the pair correlation,
as this can be the case near a liquid-gas critical point. In
case this divergence can be due to instabilities in the or
tational order. Finally, using Eqs.~10! and ~20! ~namely,
Rm005rNSm), the above expression can also be written in
more straightforward way as

xT

xT
0 511rN(

mn
h̃mn0~0!SmSn ~56!

in terms of the order parameters of the one-body function
this form theisotropic fluid limit is trivial and leads to the
known resultxT /xT

0511r I h̃
000(0)51/@12r I c̃

000(0)#.

4. Magnetic susceptibility

In the presence of an external field, one can compute
response of the fluid using the general expression@13#

bx5
1

V
“B^ bMO , ~57!

where the symbol̂ denotes a tensorial product, and whe
the net magnetization is given by

bMO 5“B ln~Z!, ~58!

with the Canonical ensemble the partition functionZ given
by

Z5
1

N!L3N E d1...dN exp~2bFext2bUN!, ~59!

where bUN is the total energy of the system andbFext

5S ibf( i )52S iBPa(ui•z) is the total contribution of the
external field which is chosen to be in the direction of thez
axis. It is clear that explicit expressions for the magnetizat
and susceptibility will depend on the actual form chosen
the ordering external field. It is quite straightforward to o
tain the net magnetization of the fluid in term of the sing
density. For the Heisenberg model, one obtains, explicitl

bMO 5rNS1z. ~60!

It is not surprising that the net magnetization of the Heis
berg model is directly related to the rank-1 order parame
S1 . Similarly, one can relate the magnetic susceptibility
the pair density, and subsequently to the pair correlat
function. A straightforward calculation shows that the tens
bx is diagonal. For the Heisenberg model, one obtains
plicitly:
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bxxx5bxyy52(
m,n

Rm11h̃mn1~0!Rn112R111, ~61!

bxzz5(
m,n

Rm10h̃mn0~0!Rn101R110. ~62!

The presence of them51 component of the pair correlatio
function in the transverse components of the susceptib
tells us immediately that these will diverge in case of sp
taneous magnetization below the Curie point. These
known results from the classical ferromagnetic Heisenb
model @1#. The longitudinal part is always finite, as it in
volves onlym50 terms. It is interesting to examine the is
tropic limit of the susceptibility~62!. In this case one ha
h̃mnm5(2)mh̃mdmn and R11152R1105r I /3. Therefore, all
three components of the susceptibility tensor are equal,
one hasbx5(r I /3)@11(rI/3)h̃1(0)#, which is related to the
Kerr constant@29#. This expression diverges at the limit o
stability of the isotropic phase. Similar expressions can a
be derived for the nematic model (a52).

5. Elastic constants

The general expressions for the elastic constants of
dered fluids have been given by Poniewiersky and Ste
@30#, and can be cast in a fourth-rank tensorial form

bKi jkl 5
1

2 E dr du1du2Vij ~1,2!Wkl~1,2! ~63!

where the two second rank tensors are given by

V~1,2!5@ iLW 1r~1!# ^ @ iLW 2r~2!#,
~64!

W~1,2!5c~1,2!rW ^ rW.

Expression~63! can be greatly simplified for separable inte
actions. In particular, ther integration can be performed d
rectly over the second tensorW(1,2), leading to the secon
moment of the direct correlation function, which was intr
duced in the small-k expansion used in Eq.~31! in the form
of the matrixC̃1

(2) in terms of the expansion coefficients
the dcf. The integration over the angles shows that the th
elastic constantsK15Kxxxx ~splay!, K25Kxxyy ~twist!, and
K35Kzzxx ~bend! merge into a unique constant for separa
interactions:

bK5bK15bK25bK352
rN

2

3
AC̃1

~2!A, ~65!

whereA is the eigenvector in Eq.~18!. It is interesting to
relate this elastic constant to the long range decay of the
correlation function in Eq.~34! in the case of spontaneou
ordering in the absence of any external field. We note t
using Eqs.~15!, ~17!, ~11!, and ~13!, this equation can be
rewritten in term of the full pair correlation in the Fourie
space as

lim
k→0

h̃~k,u1 ,u2!5k2
iLW 1r~1!iLW 2r~2!

k2 . ~66!
y
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We start with the OZ equation~22! and insert in it the small-
k-vector expansion of the direct correlation function up
second order,

c̃~k,u1 ,u2!5 c̃~0!~u1 ,u2!1k2c̃~2!~u1 ,u2!1o~k4!,
~67!

as well as Eq.~66!. Making then use of the one-body closu
equation~11! with Eq. ~13! to simplify the h̃ contribution
from the left hand side, then multiplying both sides b
iLW 2r(2), integrating over the angleu2 and, once again mak
ing use of the one-body closure equation, one obtains a
lation involvingk2 and the integral of the second moment
the dcf, which is identical to the expression involving th
elastic constant~65!. In other words, one has

k25
1

bK
. ~68!

By construction, this relation should hold only in the ze
field limit.

6. Long range behavior of the orientational correlations

In what concerns the calculation of the expansion coe
cients gmnm(r ) by computer simulations, it is important t
point out the actually measured property is the pair den
function r (2)(1,2)5r(1)r(2)g(1,2), and not the pair corre
lation function itselfg(1,2). This difference is not importan
in the isotropic phase, becauser(1)5r I /(4p) is a constant,
but it is crucial for the ordered phase. Using the expansion
r (2)(1,2),

r~2!~1,2!5 (
m,n,m

r2
mnm~r !Rm

m~1!R2m
n ~2!, ~69!

it is easy to see that the canonical ensemble angular ave
^Rm

m(1)R2m
n (2)& points tor2

mnm(r ), and not togmnm(r ). Us-
ing the orthogonality of the Wigner elements, one can rel
the expansion coefficients of the pair density function to
expansion coefficients of the pair distribution functio
gmnm(r ):

r2
mnm~r !5 (

m8,n8
Rm8n8mgm8n8m~r !Rn8nm. ~70!

This relation allows us to settle an issue that was not cle
stated in the past literature concerning the behavior of p
correlations at large distance. Both in the isotropic and
dered phases, the pair distribution functiong(1,2) goes to
unity in this limit @as limr→` g000(r )51 and all other
gmnm(r ) decay to zero in the same limit#. It is the pair den-
sity functionr (2)(1,2) that depends on the order paramet
in this limit. Using the relationRm005R0m05rNam /(2m
11)5rNSm , whereSm is the order parameter of orderm
@e.g., Eq.~10!#, the above relation indicates that

lim
r→`

r2
mnm~r !5rN

2 SmSndm0. ~71!

In particular, whenm5n, one finds the often quoted limi
limr→` r2

mm0(r )/rN
2 5Sm

2 . It is important to note that, as onl
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TABLE I. The thermodynamical properties for the ferromagnetic Heisenberg model from Monte
simulations. Results forr* 50.7 and for field valuesB* 50 and 1 @the total excess internal energ
E/(NkBT), the compressibility factorZ5bP/r, and the first and second rank order parameters (S1 andS2 ,
respectively!#.

T*

B50 B51

E/NkBT Z S1 S2 E/NkBT Z S1 S2

10.0 20.015 5.561 0.071 0.043 20.814 5.281 0.532 0.192
8.0 20.022 5.603 0.061 0.035 21.023 5.085 0.591 0.238
7.0 20.052 5.591 0.114 0.035 21.180 5.072 0.625 0.277
6.0 20.146 5.495 0.248 0.051 21.400 4.907 0.666 0.324
5.0 20.511 5.089 0.492 0.158 21.774 4.397 0.726 0.399
4.0 21.169 4.354 0.682 0.345 22.251 3.879 0.773 0.473
3.0 22.069 3.293 0.789 0.499 23.106 2.917 0.831 0.577
2.0 23.744 1.287 0.869 0.659 24.774 1.236 0.887 0.700
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the m51 expansion coefficients have a long range criti
decay, the above mentioned asymptotic limit is attained
ponentially. These results are well known for lattice syste
@1#, and it is interesting to find their off-lattice analog here,
term of the standard liquid state theory. Finally, one c
compute the ‘‘two-point’’ correlation function often quote
in lattice theories of the Heisenberg model, which is rela
to the canonical angular average of the dot productu1•u2 .
One then finds

^u1•u2&5(
mn

Rm11gmn1~r !Rn111(
mn

Rm10gmn0~r !Rn10.

~72!

The large-r limit of this function is simply limr→`^u1•u2&
5rN

2 S1
2. It is particularly interesting to examine the larger

behavior of this function in the case of spontaneous orde
with zero field. It is then clear that, as them51 component
are all long ranged, this asymptotic limit is reached algeb
ically in 1/r . These findings are in perfect agreement of t
known from lattice theories@1#.

III. RESULTS

The two model interactions of the type~1! studied in the
present work are explicitly given by

bu~1,2!5buHS~r !2a
exp„2k~r 2s!…

r
Pa~u1•u2!,

~73!

where buHS(r ) is the usual hard sphere interactio
@buHS(r )5` if r ,s andbuHS(r )50 if r .s] anda51 in
the anisotropic part of the interaction selects the Heisenb
model anda52 selects the nematic model. In the prese
work, we consider only the ferromagnetic Heisenberg mo
with a.0. The antiferromagnetic model can equally
solved by the present method@27#. In all the results reported
here k5s and a51. The external field is chosen to b
model dependent in order to follow the symmetry of t
particles interaction:

bfext~1!52BPa~u1•u2! ~74!
l
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We have solved numerically the three coupled equati
consisting of the one-body equations~15!–~17!, the OZ
equation~25!, together with one of the closure equations, E
~37! for RHNC or HNC, Eq.~41! for PY, and finally Eq.~42!
for MSA, and obtained the expansion coefficientsam , cmnm

andhmnm for several thermodynamical points in the$r* ,T* %
space, where the reduced densityr* is defined asr* 5rs3

and the reduced temperature isT* 5kBT/a. The hard sphere
bridge function@31# was used in the RHNC closure. Th
RHNC equation contains, in addition, a self consistent de
mination of the effective density contained in the bridge te
@26#. We have neglected this additional step here, and ta
the effective density to be the current densityrN . The
RHNC results are virtually identical in both approaches
the isotropic phase. This might not be the case in the orde
phase. Once these functions are known, one can deter
some of the thermodynamical properties of the ordered flu
We have compared our results with computer simulation

A. Monte Carlo simulations

Monte Carlo simulations have been performed, withN
5500 particles, by using standard NVT ensemble techniq
@32,18#. Interactions~73! have been truncated at half bo
size and appropriate long range corrections have been
plied for the internal energy and the virial pressure@18#. The
order parameters of the system have been monitored bo
the presence of the field and without it. The finite size effe
do not allow a clearcut evidence of the phase transition w
the system is spontaneously ordered. Each simulation
state point was conducted with an equilibration run of ab
1–2 million steps followed by a production run of about 2–
million steps. Long runs were needed to obtain high or
correlation functions which are particularly noisy in the is
tropic phase, mainly due to their low magnitude.

We would like to stress again that only the expans
coefficientsr2

mnm(r ) of the pair density functionr (2)(1,2)
are measured in the computer simulations. The thermo
namical properties for both models measured at fixed den
r* 50.7 are reported in Tables I and III.

B. Numerical solution of the integral equations

The Fourier transform is at the heart of the numeri
solution of the integral equations. Fortunately, for the case
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TABLE II. ~a! The thermodynamical properties for the ferromagnetic Heisenberg model from RHNC theory. Results forr* 50.7 and for
field valuesB* 50 and 1~in addition to the quantities defined for Table I, are listed the isothermal compressibilityxT /x0 and the elastic
constantKelast). ~b! The thermodynamical properties for the ferromagnetic Heisenberg model from HNC theory. Results forr* 50.7 and for
field valuesB* 50 and 1. The notations are as in Tables I and II~a!. ~c! The thermodynamical properties for the ferromagnetic Heisenb
model from the PY theory. Results forr* 50.7 and for field valuesB* 50 and 1. The notations are as in Tables I and II~a!. ~d! The
thermodynamical properties for the ferromagnetic Heisenberg model from the MSA theory. Results forr* 50.7 and for field valuesB*
50 and 1. The notations are as in Tables I and II~a!.

T*

B50 B51

E/NkBT Z xT /x0 S1 S2 Kelast E/NkBT Z xT /x0 S1 S2 Kelast

~a!

10.0 20.015 5.699 0.0571 0 0 0 20.852 5.482 0.0603 0.542 0.204 1.007
8.0 20.027 5.694 0.0572 0 0 0 21.080 5.371 0.0621 0.612 0.261 1.564
7.0 20.042 5.684 0.0574 0 0 0 21.256 5.277 0.0637 0.651 0.304 2.023
6.3 20.074 5.655 0.0623 0.063 0.002 0.021 - - - - - -
6.2 20.122 5.629 0.0673 0.188 0.018 0.202 - - - - - -
6.0 20.212 5.578 0.0678 0.303 0.052 0.545 21.498 5.140 0.0659 0.695 0.357 2.691
5.0 20.681 5.271 0.0707 0.565 0.211 2.264 21.841 4.944 0.0693 0.743 0.424 3.690
4.0 21.277 4.894 0.0757 0.706 0.369 4.503 22.354 4.659 0.0749 0.793 0.507 5.257
3.0 22.171 4.436 0.0867 0.805 0.527 8.019 23.198 4.258 0.0864 0.844 0.605 7.945
2.0 23.877 4.152 0.1244 0.883 0.689 15.325 24.870 3.967 0.1245 0.896 0.721 13.46

~b!

10.0 20.015 6.669 0.0740 0 0 0 20.854 6.464 0.0794 0.549 0.204 1.008
8.0 20.027 6.661 0.0742 0 0 0 21.083 6.364 0.0829 0.612 0.262 1.565
7.0 20.042 6.649 0.0746 0 0 0 21.159 6.277 0.0857 0.651 0.304 2.025
6.3 20.076 6.621 0.0846 0.072 0.002 0.027 - - - - - -
6.2 20.126 6.595 0.0923 0.194 0.019 0.214 - - - - - -
6.1 20.171 6.573 0.0928 0.258 0.036 0.387 - - - - - -
6.0 20.216 6.553 0.0932 0.305 0.053 0.553 21.502 6.154 0.0897 0.695 0.358 2.693
5.0 20.684 6.285 0.0986 0.565 0.212 2.269 21.846 5.982 0.0960 0.743 0.425 3.692
4.0 21.282 5.964 0.1086 0.706 0.369 4.506 22.360 5.745 0.1070 0.793 0.507 5.259
3.0 22.179 5.625 0.1327 0.805 0.527 8.014 23.207 5.454 0.1320 0.844 0.605 7.947
2.0 23.894 5.850 0.2456 0.883 0.690 15.256 25.517 5.662 0.2462 0.897 0.723 13.488

~c!

10.0 20.014 5.307 0.0539 0 0 0 20.842 5.025 0.0579 0.545 0.200 0.988
8.0 20.024 5.301 0.0539 0 0 0 21.066 4.866 0.0604 0.606 0.256 1.529
7.0 20.035 5.293 0.0539 0 0 0 21.238 4.734 0.0625 0.645 0.297 1.979
6.0 20.064 5.268 0.0558 0.034 0.000 0.006 21.478 4.545 0.0656 0.689 0.350 2.638
5.7 20.162 5.169 0.0793 0.239 0.035 0.333 - - - - -
5.5 20.259 5.080 0.0771 0.333 0.069 0.670 - - - - -
5.0 20.525 4.820 0.0765 0.488 0.158 1.593 21.820 4.256 0.0702 0.737 0.417 3.636
4.0 21.178 4.182 0.0815 0.677 0.338 3.892 22.336 3.806 0.0782 0.789 0.501 5.231
3.0 22.142 3.256 0.0968 0.799 0.521 7.463 23.193 3.043 0.0950 0.843 0.604 8.051
2.0 23.949 1.598 0.1618 0.891 0.709 15.033 24.906 1.536 0.1604 0.899 0.729 14.219

~d!

10.0 20.009 5.309 0.0537 0 0 0 20.787 5.039 0.0563 0.518 0.179 0.882
8.0 20.017 5.302 0.0537 0 0 0 20.991 4.889 0.0578 0.576 0.228 1.361
7.0 20.024 5.296 0.0537 0 0 0 21.151 4.762 0.0592 0.614 0.264 1.767
6.0 20.038 5.282 0.0537 0 0 0 21.378 4.573 0.0611 0.659 0.313 2.370
5.5 20.055 5.264 0.0542 0.024 0.000 0.003 - - - - - -
5.4 20.067 5.252 0.0622 0.067 0.003 0.027 - - - - - -
5.3 20.105 5.214 0.0736 0.156 0.014 0.150 - - - - - -
5.2 20.155 5.162 0.0729 0.227 0.031 0.324 - - - - - -
5.0 20.267 5.049 0.0713 0.328 0.067 0.705 21.798 4.284 0.0640 0.709 0.377 3.298
4.0 20.938 4.357 0.0723 0.602 0.252 2.959 22.212 3.821 0.0687 0.764 0.459 4.787
3.0 21.895 3.367 0.0802 0.751 0.438 6.152 23.048 3.017 0.0782 0.822 0.561 7.376
2.0 23.623 1.597 0.1089 0.854 0.625 11.899 24.705 1.386 0.1076 0.880 0.684 12.686
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separable interactions only zeroth-order Fourier-Han
transforms are required. All expansion coefficients have b
computed over 1024 points with a mesh ofDr 50.02. This
ensured an accuracy of at least1

1000 in the OZ relations~26! at
k50. The rotational invariant expansion have been p
formed up tonmax54 for the Heisenberg model@a total of 35
unique (mnm) combinations#, and nmax56 for the nematic
model ~a total of 30 unique projections!. These choices en
sure that the convergence of the expansion of the var
correlation functions is not affected by thenmax truncation.
The symmetry of the nematic model interaction allows o
evenm andn values to be taken into account. The numeri
evaluation of the one-body closure was done by using 1
points representation of the Legendre polynomials with
standard Simpson type quadrature to evaluate the var
integrals. We found it quite important to ensure that the s
rules ~18! and ~21! are verified to a great accuracy~relative
difference less than1

1000!. Another important point concern
the solution method used in the zero-field case. The l
range 1/r divergence that appears in all them51 expansion
termsgmnm(r ) must be carefully handled during the iteratio
procedure. We have used the method generally applied in

FIG. 1. Some expansion coefficientsgmnl(r ) of the pair corre-
lation function for the Heisenberg model in the isotropic phase
r* 50.7 and T* 57. The symbols are as follows: Monte Car
simulations ~dots!, RHNC ~solid line!, HNC ~dotted line!, PY
~dashed line!, and MSA~dash-dotted line!.
l
n

r-

us

l
0
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numerical solution of coulombic fluid. The divergingk50
contribution ofg̃mnm(k) was removed analytically using Eqs
~34! and ~66! and the corresponding long range tail
gmnm(r ) was added after the numerical inverse Fourier tra
form. The accuracy of this method is limited by the accura
in the solution of the one-body function@quite simply be-
cause the effective ‘‘charge’’kWm in Eq. ~34! is known to
the same accuracy as that used in the one-body equat#.
For this reason it was not possible to obtain converging
lution for exactly zero field values@B50 in Eq.~74!#. How-
ever, we found that the structural and thermodynamical pr
erties of the fluid were insensitive to values of smaller th
B, 1

500. This was particularly tested in the case of the MS
for which an analytical solution is available@11,12#, particu-
larly at exactly zero field. The numerical implementation
the code allows one to pass directly from an isotropic so
tion to an ordered one by slightly lowering the temperatu
for example. The embodied one-body equation bifurcate
the ordered solution, and the iterative procedure stabili
this solution as being numerically viable. It was thus possi
to cover, at a fixed density, a temperature range above
below the Curie point. The results reported in the Tables
and IV are for fixed densityr* 50.7.

The actual numerical solution is very similar to that us
in the solution of integral equations for the isotropic pha
For each state point, one starts the iterative cycle wit
guess of the initial dcf~usually taken to be the solution of th
closest state point that was obtained previously!. The corre-
sponding coefficientscmnm(r ) are first Fourier transformed
One solves the one-body equations~15!–~17! within an inner
interactive cycle, and the order parameters thus determ
are used to build theRm matrices. Then the OZ equation~25!
is solved matricially in order to obtain theh̃mnm(k) terms. At
this point we take care of the eventualk50 singularity in the
case of spontaneous ordering by removing analytically
1/k2 singularity in them51 components. This is actuall
done by determining a test function of the for
g exp(2jk2)/k2 whose inverse Fourier transform is exact
known. g is determined accurately@see Eqs.~34!, ~67!, and
~69!#, andj is determined by fitting the small-k behavior of
h̃mn1. Then theh̃mnm(k) terms are inverse Fourier trans
formed and the newcmnm(r ) are determined by the closur
relation. The iterative cycle is continued with new dcf whic
can be obtained by a Picard type mixing of the old and n
values obtained numerically. Convergence is attained w
the difference between two iterates is smaller than 1026. At
each iteration steps, the numerical accuracy of the sum r
~18! and~21!, as well that of the OZ atk50 is checked to be
at least about 1

10 000.

C. Ferromagnetic Heisenberg fluid

The lattice version of the Heisenberg model is a stand
text book problem. The continuum version has attracte
recent interest among liquid state theorists, and this mo
has been investigated by computer simulations@18,21,33#,
by integral equation theories in the isotropic pha
@18,21,11,12# and the ordered phase@13#, and by mean field
theories@19#. The (r,T) phase diagram of such a model h
been investigated for interaction~71! with a51 ~for a51
and k5s), both with and without an ordering field. In th

t
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FIG. 2. Some expansion coefficientsr2
mnl(r )/r2 of the normalized pair density function for the Heisenberg model atr* 50.7 andT*

52 for field valueB* 51. The symbols are as in Fig. 1.
ic
th
m
d,
m

om
e
s
x

r
sh
th
o
ia

lts
t
n

he
on

g-
e

p-

the
e

the

p-

als,
y-

SA
r is
ore

nd-
f-

ith
d by
caseB50, this phase diagram has a Curie line below wh
the fluid is spontaneously ordered. In Table I we report
thermodynamical properties measured from computer si
lations at the densityr* 50.7 as the temperature is varie
for B50 and 1. The integral equations results for the sa
density are reported in four tables, Table II~a! for the RHNC
theory, Table II~b! for the HNC theory, Table II~c! for the
Percus-Yevick approximation, and finally Table II~d! for the
MSA. For this density, the Curie temperature estimate fr
the RHNC theory isTC* 56.4, in perfect agreement with th
result obtained by the RHNC theory in the isotropic pha
@18#. WhenB50, the spontaneous ordering transition is e
pected to be second order@3#. In view of Tables I and II, the
order parameter variations are indeed continuous. As fa
the simulations are concerned, it is difficult to distingui
between first and second order transitions by looking at
order parameter variation. Finite size effects tend to smo
the transition. The integral equations are free from this b
The exact value of the transition~the Curie point! is also
difficult to determine. A direct comparison with the resu
reported in Ref.@13#, for the pair interaction truncated a
r C52.5s, shows that the Curie temperature is quite differe
when the cutoff is applied. The numerical solution of all t
integral equations shows that in the ordered phase, the
body function is mostly Maier-Saupe like:r(1)
h
e
u-

e

e
-

as

e
th
s.

t

e-

[rN /(4p)exp„(B1B1)u1•n…/Z, with B15W1 the first term
in expansion~16!. W2 is always more than one order ma
nitude smaller, and higher orderWm nearly decreases at th
same rate. As an example, forr* 50.7 andT* 52, the fol-
lowing values are obtained at zero field within the PY a
proximation: W157.852,W250.497,W350.046, and W4

50.0043 It then seems quite reasonable to retain only
leadingW1 term, although the difference of 10% due to th
inclusion of the second term is already appreciable in
one-body density function, especially nearu50, where the
distribution is very peaked. Thus the Maier-Saupe like a
proximation~including only theW1 term in one-body density
function!, as used in Refs.@13,14#, is an additional approxi-
mation which is justified in the case of separable potenti
but is not a general rule to follow. As far as the thermod
namical properties are concerned, it is the PY and M
theories that seem to be the most accurate when orde
present. In the isotropic phase the RHNC theory seems m
accurate; this result is also in agreement with previous fi
ings @18,13#. The pair distribution function expansion coe
ficients for the isotropic phase~at T* 57) are shown in Fig.
1, where all integral equation results are compared w
simulation results. In this case the components measure
the simulations~pair density! are identical to those of the
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FIG. 3. Some expansion coef
ficients gmnl(r ) of the pair corre-
lation function for the Heisenberg
model atr* 50.7 andT* 52 for
field value B* 51. The symbols
are as follows: RHNC~solid line!,
HNC ~dotted line!, PY ~dashed
line!, and MSA~dash-dotted line!.
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pair distribution~to a factorr I
2). The RHNC and PY results

seems to be the most accurate as far as the compo
g000(r ) is concerned, while the HNC results seem to be
worst. For the anisotropic componentg110(r ), again it is the
RHNC theory which give the most accurate result, wher
the MSA theory gives the worst results~some of the projec-
tions are rigorously zero!. The HNC and PY theories bracke
the RHNC results, as they do for the hard sphere fluid c
In Fig. 2, we compare the expansion coefficients of the n
malized pair density functionr2

mnm(r )/rN
2 for an ordered sys-

tem (B* 51 and T* 52). All integral equation results ar
quite similar. This is largely imputed to the fact that all th
expansion terms withm50 are weighted by the termg000(r )
which has the largest magnitude, and which all integral eq
tions predict quite reasonably. This situation might be diff
ent with another type of interaction where the anisotro
part might be predominant@a larger in Eq.~71!, or for dipo-
lar fluids for example#. A closer look reveals that both
RHNC and PY results are quite accurate. In Fig. 3, we co
pare now the components of the pair correlation funct
gmnm(r ) between the four integral equations. It is now po
sible to discriminate letter between the theories. We find t
the RHNC results generally interpolate between the H
and PY results, though they are generally closer to the H
values. In view of this, one might expect that a Roge
Young type approach might be more suitable. Indeed,
results obtained in Ref.@13# with a Zerah-Hansen closure a
quite good. It is also clear that the MSA theory, which is t
ent
e

s
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r-

a-
-
c

-
n
-
at

C
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e

most linearized, also gives the worst structural results. Ho
ever, a cancellation of the various contributions in Eq.~71!
leads to a pair density function that is almost identical for
theories. A similar conclusion is also reached for the str

FIG. 4. The structure factorS(k) for the Heisenberg model a
r* 50.7 andT* 52 for the field valueB* 51. The symbols are as
in Fig. 3.
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FIG. 5. The one-body density functionf (x) for the Heisenberg model atr* 50.7 andT* 52 for field valueB* 50. The symbols are as
in Fig. 3.-
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ture factor shown in Fig. 4, which is also a combination
the elementary constituents of the pair correlation funct
~54!, while the latter factors, shown in Fig. 5, are quite d
ferent between the four theories. The largek50 value of the
h̃111 component must be noted. This is the diverging com
nent in the zero-field ordered case. Finally, it must be no
that the componentsg110 and2g111 are identical in the iso-
tropic case, and become quite different in the ordered c
More generally, one can think of the componentsgmnm as a
‘‘degeneracy’’ of the main~isotropic! componentgmm0,
when an external field is applied. The one-body density fu
tion f „x5cos(u)…5r(1)/rN for r* 50.7 andT* 52 at zero
field is compared in Fig. 6 between the four theories.
theories reflect the strong ordering by a distribution ve
peaked aroundu50. The RHNC and HNC curves are almo
identical, indicating that the isotropic bridge diagram do
not contribute much to the ordering of the particles. T
trend is already visible in the pair distribution function. Th
PY theory predicts a marginally narrower distribution th
the RHNC/HNC theory, whereas the MSA theory predict
broader distribution, probably again reflecting the lineari
tion embodied in this theory. The comparison of the ord
parametersS1 and S2 between the four theories and th
calculated by Monte Carlo simulations~Tables I and II!
show that the RHNC theory is in somewhat better agreem
f
n

-
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e.
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nt

FIG. 6. The expansion coefficientg̃mn0(k) of the Fourier trans-
form of the pair correlation function for the Heisenberg model
r* 50.7 andT* 52 for field valueB* 51 ~upper panel!. The sym-
bols are as in Fig. 3.
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with the computer simulation results. Finally, the last colum
in Tables II shows the variation of the elastic constant w
the temperature. We note the rapid increase with the low
ing of the temperature, reflecting that larger elasticity of
fluid at low temperatures.

D. Nematic model

This model corresponds toa52 in Eq. ~73! ~we again
keep a51 and k5s). This type of model was used b
Luckhurst and Romano@34# in order to investigate by com
puter simulations a nematic model which was not Mai
Saupe like~with a short range orientational interaction!. In
the absence of field, this model has an isotropic-nem
(I -N) transition which differs from that of the Heisenbe
model as it is a first order transition. This is a well know
result, and can be obtained by a symmetry consideratio
the Landau–de Gennes Hamiltonian in its mean field vers
@3,4#. This first order transition is visible from Tables IV a
the finite jump of the second rank order parameterS2 , which
goes from 0 to approximately 0.4 at the transition tempe
ture. It is harder to localize from the computer simulations
Table III due to finite size effects. From what was seen
Sec. II F, it must be noted that this fluid has exactly the sa
Yukawa liquid-gas phase diagram as the previous Heis
berg model whenB5`. This model offers several analogie
with the Heisenberg model. In particular, atB50, it has the
equivalent of the Curie line in the (r,T) phase diagram
below which the fluid is in a nematic liquid crystalline phas
At r* 50.7 the RHNC estimate of the isotropic-nematic tra
sition temperature isTIN* '4.35. We did not investigate th
finite field liquid-gas coexistence in the present work, a
report only the temperature dependence of the thermo
namical properties for fixed densityr* 50.7, both atB51
and B50. The computer simulation results are reported
Table III, and the integral equation results in Tables IV. T
general conclusion is quite similar to that of the previo
paragraph as concerns the various integral equations. In
7. some components of the pair density are compared
tween simulation and theoretical results, for the casesT*

TABLE III. The thermodynamical properties for the nemat
model from Monte Carlo simulations. Results forr* 50.7 and for
field valuesB* 50 and 1. The notations are as in Table I.

T*

B50 B51

E/NkBT Z S2 E/NkBT Z S2

10.0 20.0585 5.7013 0.04 20.4869 5.4926 0.3563
8.0 20.0124 5.601 0.051 20.6500 5.3624 0.4225
7.0 20.0165 5.6206 0.0420 20.7873 5.3582 0.4714
6.0 20.0276 5.6086 0.0613 21.0999 5.0477 0.5647
5.0 20.0481 5.4636 0.0875 21.5637 4.6754 0.6720
4.0 20.0946 5.5640 0.1247 22.0171 4.1394 0.7205
3.8 20.8171 4.5666 0.5507 - - -
3.6 20.9740 4.5139 0.5848 - - -
3.4 21.3429 4.1331 0.6721 - - -
3.2 21.5615 3.7883 0.7051 - - -
3.0 21.8752 3.4275 0.7500 23.0616 3.0189 0.8253
2.0 23.6815 1.4757 0.8624 24.7215 1.3260 0.8808
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52 andB51. Once again we see that the RHNC and P
results are the closest to that of the simulations, and
discrimination between the four approaches is harder t
when comparing the components of the pair distribut
function. Finally, in Fig. 8. The long range behavior of th
m51 componentg221(r ) when crossing the transition tem
peratureTIN . There is a clear shift in the larger values
below TIN* '4.35. The first order nature of the transition
seen most clearly when examining the same variation
terms of the pair densityr2

220(r ). We see that the isotropic
components are now almost invisible in the upper part
Fig. 8, whereas the jump in the order parameter is visible
temperatures lower thanTIN* . These large variations of th
orientational components are not reflected in the isotro
componentg000(r ), which is quite similar across tempera
ture variations. The order parameterS2 , computed by Monte
Carlo simulations~Table III!, is generally in good agreemen
with that calculated by all four theories~Tables IV!, both at
zero fieldsB50 and 1. The one-body density function
now symmetric with respect tou50, reflecting the symmetry
of the pair interaction and that of the ordering field, which
the major difference than the Heisenberg model~which is a
vectorial model!. The elastic constants~Tables IV! indicate
that the fluid is more elastic at lower temperatures, and
temperature dependence is quite similar to that observe
the case of the Heisenberg model.

IV. CONCLUSION

A general framework for solving integral equations, f
fluids orientationally ordered by an external field, is outlin
in the present work for the particular case of the separa
interactions. The major difference with nonseparable inter
tions is that the degrees of freedom introduced by the c
pling between the intermolecular axis and the orientations
the particles are totally absent from the former case. In t
sense, this type of interaction is suitable to study the c
tinuum analog of lattice models. Thus, by developing a l
uid state approach to this class of problem, one can ex
some feedback from the lattice model physics, which is g
erally richer, and often with exact results@1#. In particular,
the critical behavior of such models is well classified, a
there are considerable problems obtaining similar resu
even for simple liquids. Despite many recent investigatio
@18,13,19#, this is still an open field of investigation.

In the present work, the basic relations between the o
body closure relations and the Ornstein-Zernike equation
presented, and it is shown that two of the three availa
closures are readily embodied in the OZ equation in thk
50 limit, and in that sense they can be considered as s
rules for ordered systems. The status of the one-body clo
derived from the BGY hierarchy is less clear, although n
merical evidence from the integral equations@13# indicate
that it gives quite good results.

From a technical point of view, it is shown here that t
integral equation techniques are no more difficult to solve
orientationally ordered systems than they are for isotro
ones. The present work shows that it is possible to write
the equations and expressions for thermodynamical pro
ties in a compact matrix form. In particular, the spontaneo
ordering that can occur in the absence of an external fiel
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TABLE IV. The thermodynamical properties for the nematic model from RHNC theory. Results forr* 50.7 and for field valuesB*
50 and 1. The notations are as in Tables I and II~a!. ~b! The thermodynamical properties for the nematic model from HNC theory. Re
for r* 50.7 and for field valuesB* 50 and 1. The notations are as in Tables I and II~a!. ~c! The thermodynamical properties for the nema
model from the PY theory. Results forr* 50.7 and for field valuesB* 50 and 1. The notations are as in Tables I and II~a!. ~d! The
thermodynamical properties for the nematic model from the MSA theory. Results forr* 50.7 and for field valuesB* 50 and 1. The
notations are as in Tables I and II~a!.

T*

B50 B51

E/NkBT Z xT /x0 S2 Kelast E/NkBT Z xT /x0 S2 Kelast

~a!
10.0 20.007 5.715 0.0569 0 0 20.548 5.593 0.0588 0.391 1.534
8.0 20.013 5.710 0.0570 0 0 20.740 5.507 0.0607 0.465 2.714
7.0 20.017 5.706 0.0570 0 0 20.917 5.421 0.0625 0.523 3.916
6.0 20.025 5.699 0.0571 0 0 21.191 5.278 0.0655 0.596 5.943
5.0 20.043 5.687 0.0572 0 0 21.600 5.049 0.0695 0.679 9.256
4.4 20.069 5.665 0.0577 0 0 - - - - -
4.34 20.416 5.458 0.1288 0.391 4.004 - - - - -
4.32 20.459 5.429 0.1106 0.414 4.485 - - - - -
4.3 20.494 5.404 0.1027 0.432 4.905 - - - - -
4.2 0.645 5.302 0.0898 0.498 6.602 - - - - -
4.1 20.771 5.217 0.0859 0.544 8.027 - - - - -
4.0 20.889 5.141 0.0841 0.581 9.342 22.194 4.701 0.0755 0.759 14.480
3.0 22.029 4.395 0.0887 0.777 22.245 23.105 4.189 0.0869 0.829 23.054
2.0 23.805 3.666 0.1254 0.874 43.030 24.814 3.558 0.1248 0.890 39.839

~b!
10.0 20.008 6.675 0.0739 0 0 20.549 6.572 0.0770 0.392 1.540
8.0 20.013 6.671 0.0740 0 0 20.743 6.494 0.0802 0.466 2.725
7.0 20.018 6.667 0.0740 0 0 20.921 6.415 0.0835 0.524 3.932
6.0 20.026 6.662 0.0741 0 0 21.196 6.287 0.0887 0.597 5.964
5.0 20.044 6.649 0.0744 0 0 21.606 6.082 0.0963 0.679 9.279
4.5 20.063 6.633 0.0749 0 0 - - - - -
4.45 20.066 6.629 0.0751 0 0 - - - - -
4.42 20.069 0.626 0.0752 0 0 - - - - -
4.32 20.467 6.427 0.1935 0.417 4.552 - - - - -
4.3 20.503 6.404 0.1709 0.436 4.969 - - - - -
4.2 20.651 6.315 0.1391 0.500 6.648 - - - - -
4.1 20.778 6.242 0.1300 0.546 8.070 - - - - -
4.0 20.895 6.174 0.1263 0.582 9.375 22.201 5.777 0.1080 0.760 14.502
3.0 22.037 5.542 0.1374 0.777 22.301 23.115 5.362 0.1329 0.830 23.071
2.0 23.820 5.200 0.2493 0.874 43.108 24.831 5.113 0.2470 0.891 39.858

~c!
10.0 20.007 5.312 0.0538 0 0 20.541 5.163 0.0562 0.387 1.503
8.0 20.012 5.309 0.0538 0 0 20.726 5.050 0.0585 0.458 2.633
7.0 20.016 5.307 0.0538 0 0 20.896 4.942 0.0608 0.514 3.781
6.0 20.024 5.303 0.0539 0 0 21.161 4.751 0.0647 0.586 5.735
5.0 20.038 5.294 0.0539 0 0 21.565 4.433 0.0704 0.669 8.997
4.0 20.075 5.263 0.0542 0 0 22.164 3.924 0.0788 0.753 14.297
3.8 20.094 5.245 0.0549 0.013 0.005 - - - - -
3.6 21.143 4.212 0.1020 0.631 11.352 - - - - -
3.0 21.962 3.401 0.1025 0.764 20.435 23.096 3.083 0.0958 0.828 23.301
2.0 23.892 1.551 0.1621 0.884 44.413 24.857 1.478 0.1601 0.894 42.152

~d!
10.0 20.005 5.313 0.0537 0 0 20.495 5.179 0.0551 0.362 1.291
8.0 20.008 5.310 0.0537 0 0 20.645 5.086 0.0563 0.421 2.181
7.0 20.011 5.307 0.0537 0 0 20.785 4.992 0.0576 0.468 3.088
6.0 20.016 5.303 0.0537 0 0 21.013 4.825 0.0599 0.535 4.692
5.0 20.025 5.295 0.0537 0 0 21.387 4.526 0.0637 0.620 7.567
4.0 20.045 5.276 0.0537 0 0 21.978 4.013 0.0693 0.713 12.521
3.5 20.070 5.251 0.0537 0.004 0.000 - - - - -
3.4 20.874 4.432 0.1090 0.532 8.157 - - - - -
3.2 21.223 4.070 0.0935 0.617 11.680 - - - - -
3.0 21.549 3.733 0.0901 0.676 14.963 22.910 3.140 0.0789 0.800 20.963
2.0 23.516 1.709 0.1113 0.841 34.637 24.636 1.451 0.1080 0.873 37.451
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obtained by all the integral equations closures investigate
this work, for sufficiently low temperatures. This systema
zation opens the way for investigating several interest
cases such as ferrofluids.

Nonseparable interactions are more realistic, and also
involve more rotational invariants in the expansion of t
correlation functions, precisely due the additional orien
tional couplings that must be taken into account. Howev
the situation is quite similar to that presented here, mainly
what concerns the relation between the OZ and the one-b
closure equation@28#. The numerical effort is more involved
but not more than that involved in the solution of the integ
equations for hard convex bodies, for example. This ste
quite necessary, however, if one aims at exploring m
complex phases such as smectic phases, for which only
sity functional theories are able to tackle this problem in
nonphenomenological approach.
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FIG. 7. Some expansion coefficientsr2
mnl(r )/r2 of the normal-

ized pair density function for the Nematic model atr* 50.7 and
T* 52 for field valueB* 51. The symbols are as in Fig. 1.
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APPENDIX: INVARIANT EXPANSION OF THE MAYER
FUNCTION FOR SEPARABLE INTERACTIONS

In order to solve the Percus-Yevick approximation~41!, it
is necessary to obtain the expansion coefficients of
Mayer functionFM

mnm(r ). For the case of a separable pote
tial of the form of Eq.~1!, we show how these coefficient
can be obtained analytically by using a recurrence met
outlined below. We basically need to expand the function

f ~r ,x!5exp„2g~r !Pa~x!…21 ~A1!

on a basis set of Legendre polynomials. The direct Tay
expansion of the exponential leads to products of Legen
polynomials of different orders. The double product can
expanded as@25#

Pm1
~x!Pm2

~x!5(
m3

~2m311!S m1

0
m2

0
m3

0 D 2

Pm3
~x!.

~A2!

FIG. 8. The expansion coefficient of the normalized pair dens
r2

220(r )/r2 ~upper panel! and the pair correlation functiong221(r )
~lower panel! for the nematic model atr* 50.7 and for field value
B* 50. From top to bottom, the temperatures areT* 52, 3, 4, 4.1,
4.2, 4.3, 4.4, 5, 6, and 7.
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Using this relation, one can successively expand product
higher orders. Thus, the general expansion of Eq.~A1! reads
now

f ~r ,x!5211(
n

~2 !n

n!
g~r !n(

mn

amn
Pmn

~x!, ~A3!

where
. A
of
amn

5 (
m2 ,...,mn21

~2m211!¯~2mn11!

3S a
0

a
0

m2

0 D 2

¯S a
0

mn21

0
mn

0 D 2

~A4!

with the selection ruleua2mn21u<mn<a1mn21 obeyed
for each indexmn . In practice, the above expansion can
computed numerically very efficiently, and the expansi
converges quite rapidly~it is sufficient to retain aboutmn
510 to obtain a precision of 1

10 000 nearr 5s).
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